博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
一则小故事看产品数据分析
阅读量:6281 次
发布时间:2019-06-22

本文共 3394 字,大约阅读时间需要 11 分钟。

hot3.png

0、一则小故事:还有一元钱哪儿去了?

网上有个故事很有趣,说3个人去投宿,一晚30元.三个人每人掏了10元凑够30元交给了老板. 後来老板说今天优惠只要25元就够了,拿出5元命令服务生退还给他们, 服务生偷偷藏起了2元, 然后,把剩下的3元钱分给了那三个人,每人分到1元.这样,一开始每人掏了10元,现在又退回1元,也就是10-1=9,每人只花了9元钱, 3个人每人9元,3 X 9 = 27 元 + 服务生藏起的2元=29元,还有一元钱去了哪里?

猛地一看,合情合理,并且陷入思维陷阱。可仔细一琢磨,发现了问题,最大的问题是逻辑混乱和偷换概念。服务生获取的2元包含在三人支出的27元内,通过偷换支出的概念来企图建立30=3*9+2+1的伪等式,造成1元“离奇丢失”的假象。

我这里提供了两种思维方式来帮助大家梳理思路,还原事情本质。

(1)按照金钱流的方向分析

26014831_LKiR.png

按照金钱的流向,三个房客共流出了30元,在流通过程中,老板获得25元,服务生获得2元,最终还剩余3元流回到房客手中,满足30=25+2+3*1等式。

(2)按照财务上的收入和支出思路

26014831_DDCv.png

无需考虑中间的各种过程,从财务支出端看,3个房客支出27元;从收入获取端看,其中老板获得25元,服务生获得2元,27=25+2,等式成立。

数据分析是产品经理重要的一项技能,几乎所有的产品需求的出发点都是基于数据分析。产品的功能逻辑越复杂,用户量越大,决策对数据的依赖程度越大。

以上两种方法也是数据分析常用的两种方法,第一种是基于用户路径的数据分析,针对用户在各个步骤的行为分析,包括操作、流失和停留时长,对产品或服务进行优化改进;第二种常常用来对节点定位,进行转化率、占比等数据的分析。

那么作为一个产品经理,在数据分析方面要重点关注那几点呢?我自己对数据方面接触的相对比较多,分享几点自己的心得。

1、数据目标明确

目标明确是产品经理在做所有事情必须要考虑清楚的事情,不仅仅指数据。考虑清楚产品最重要满足了用户那些需求,项目在某个节点需要达成怎样的目标,具体在数据分析方面,就是考虑清楚数据的目的是什么。

在张嘴麻烦开发进行手动查询数据前(大部分公司的后台只有普通的常规性的数据,一些详细的数据一般需要手动查询和导出),产品经理一定要想清楚自己想要从这份数据中得到怎样的结果。

无论是了解产品截止到目前为止的累计用户数等了解性质的数据查询,或是为了分析付费转化率低原因等探索性质的问题分析,一定要带着目的去获取数据。

2、数据定义清楚

在清楚了目的之后,对需要的关键数据已然心中有数,这时要对关键数据的定义清楚,这里的清楚包含两部分:

(1)清楚上报机制

要清楚自己的数据是从客户端还是底层上报至服务器,上报的节点是什么,是否只在wifi状态下上报,在本地的字段保存有效期是多久,丢失的可能性有多大。了解数据上报机制能否方便产品经理更好的理解产品,对原始数据的准确率心中有底。

(2)明确指标定义

产品经理要明确各项统计数据的详细定义。拿常见的数据指标活跃用户来说,不同的产品有不同的定义,比如MIUI可能吧联网定义为活跃,而迅雷把有下载行为(新建、暂停、删除、下载完成等)定义为活跃,淘宝可能吧有购买行为定义为(有效)活跃用户。

明确指标定义是数据统计分析的前提,如果对数据指标不清楚,那数据分析也就无从谈起了。

3、数据分析

数据基本正确的情况下,对目的的分析一般有两类:

(1)定性分析

定性分析是对实物“是什么”的定义,是对事物性质的归纳。比如9月初,迅雷用户活跃用户数大增,结合对迅雷服务器每天top100下载量排行榜分析,均是iCloud流露女星相关文件,因此可以下结论:9月初用户活跃用户量增加主要是由iCloud热门事件引起的,这就是定性分析。

(2)定量分析

对应定性分析的“是什么”,定量分析就是“有多少”,是对事物数量的统计。9月初日活用户数增长了10%,就属于定量分析。

一般来说,数据分析就是对“是什么”做假设,然后用“有多少”来不断做验证的试错过程。

通过不断的假设,分析,推翻假设,再次分析的方式来得出结论。根据数据量和目的的不同,采用不同的分析方法,常用的分析方法有对比分析、回归分析和相关分析法。

26014831_o4pN.png

4、excel工具

单独把excel列出来的主要原因是因为excel太重要了,除非特别庞大的数据量,否则excel几乎能满足你所需要的所有功能。excel目前支持59999条数据量,大部分人对excel的功能使用量不足1/3,一些公式函数的使用,大部分人该是没有接触过的。

目前我也正在努力成为excel的深度用户,关于excel的使用方法和技巧,欢迎大家和我交流共同提升。

5、数据验证

在数据结论得出后,千万不要着急输出,一定要去做验证,同一组数据在不同的环境下能反映不同的问题。

还拿9月份迅雷日活增加的数据来说,除了iCloud时间之外,可能迅雷做了应用内的增量升级,导致日活增加。这个时候就要来区分两种因素的权重,得出更准确的结论。

以上是个人在工作中对数据分析的一些心得,在用户群体特征复杂多样的网络时代,数据是很重要的一个做群体分类的渠道和方法,良好的数据分析能力能够帮助产品经理做出更优的决策。

但是又不能盲信数据,产品经理丰富的经验知识也是不可或缺,否则容易出现幸存者偏差的尴尬(有兴趣的同学可以自行百度:幸存者偏差现象)。

6、不要迷信数据分析

(1)忽略沉默的用户

二战时英国空军为了降低飞机的损失,决定给飞机的机身进行装甲加固。由于当时条件所限,只能用装甲加固飞机上的少数部位。他们对执行完轰炸任务返航的飞机进行仔细的观察、分析、统计。发现大多数的弹孔,都集中在飞机的机翼上;只有少数弹孔位于驾驶舱。从数据上说, 加固机翼的性价比最高. 但实际情况缺恰恰相反, 驾驶舱才是最应加固的地方, 因为驾驶舱被击中的飞机几乎都没飞回来.
"发声"的数据是最好获取的, 但如果没把这些沉默的数据考虑进来, 那么这种数据分析是不靠谱的. 所以除了数据的结果, 还得尝试解读这些数据. 而解读数据就完全依赖人了.

(2)把沉默用户当做支持和反对的中间态

2家网站A和B,都经营类似的业务,都有稳定的用户群。它们都进行了类似的网站界面改版。改版之后,网站A没有得到用户的赞扬,反而遭到很多用户的臭骂;而网站B既没有用户夸它,也没有用户骂它。如果从数据来看, 应该是网站B的改版相对更成功, 因为没有用户表达不满。但事实并非如此。网站A虽然遭到很多用户痛骂,但说明还有很多用户在乎它;对于网站B,用户对它已经不关心它了.
网站A指的是Facebook,网站B是微软旗下的Live Space。

(3)把数据作为决策的唯一标准

通常认为数据分析指导工作是一种高性价比的做法, 不容易犯错, 对于代表资方的管理层来说, 比起依赖于人的决策, 依赖于数据的决策似乎更稳健.
这种决策在从0.5向0.8的产品改进上, 可能是有效的. 因为一个已有的产品, 数据就摆在那. 100个用户50个访问超时, 解决了这个问题, 就提升了50%的效果.
但对于从0到0.1的新产品上, 由于数据很难获取, 需要花大力气在获取模拟数据上. 往往是用一周时间去想明白一个做两个小时的产品该不该做的问题. 而且模拟的结果还和最终实际相差很远.
A/B test或是原型系统, 先做出来, 再去验证, 在一些场合下比先拿数据要有效的多.

(4)认为数据是绝对客观的

为了减少内耗, 往往依赖于数据来做决断. 我一直认为数据本身是带有主观性的, 完全客观的数据是没有的. 数据的获取方法, 数据的解读方法, 数据的统计方法, 都是人的决策. 一份数据拿出两个相反的结论来也不是没有可能. 即使主观上没有偏向性, 也受限于方法和视野.
决策上最终起作用的还是人不是数据. 虽然人有那么多的不确定性, 还可能出现争论, 扯皮, 不敢承担责任等.

7、Refer:

[1] 由“幸存者偏差”现象想到的

[2] 幸存者偏差和上浮的鸭子

[3] 怎么评价产品经理拿数据说话这回事?如何做数据分析?

[4] 思维的误区:忽视沉默的大多数

转载于:https://my.oschina.net/leejun2005/blog/318739

你可能感兴趣的文章
正文提取算法
查看>>
轻松学PHP
查看>>
Linux中的网络监控命令
查看>>
this的用法
查看>>
windows下安装redis
查看>>
CentOS7 yum 安装git
查看>>
启动日志中频繁出现以下信息
查看>>
httpd – 对Apache的DFOREGROUND感到困惑
查看>>
分布式锁的一点理解
查看>>
idea的maven项目,install下载重复下载本地库中已有的jar包,而且下载后jar包都是lastupdated问题...
查看>>
2019测试指南-web应用程序安全测试(二)指纹Web服务器
查看>>
树莓派3链接wifi
查看>>
js面向对象编程
查看>>
Ruby中类 模块 单例方法 总结
查看>>
jQuery的validate插件
查看>>
5-4 8 管道符 作业控制 shell变量 环境变量配置
查看>>
Enumberable
查看>>
开发者论坛一周精粹(第五十四期) 求购备案服务号1枚!
查看>>
validate表单验证及自定义方法
查看>>
javascript 中出现missing ) after argument list的错误
查看>>